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Summary. We present a molecular theory of the energy distributions for the 
internal quantum states of a solute in a liquid or glassy solvent. We show that 
the energy distributions for different states are correlated in a way that depends 
on the solute-solvent interactions. We show how the theory can be modified 
easily to describe the transition-energy distributions for different pairs of states, 
which are of course related to inhomogeneously broadened absorption spectra. 
We also show that the distributions for different transitions are correlated, and 
describe how this correlation is measured by nonresonant fluorescence- and 
phosphorescence-line-narrowing and hole-burning experiments. The theory pro- 
vides a microscopic framework within which to interpret different phenomeno- 
logical models. For the case of a Lennard-Jones solute in a Lennard-Jones liquid 
solvent, we compare our theory to Monte Carlo simulation. 
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tion-energy distributions - Nonlinear spectroscopy 

1. Introduction 

Inhomogeneous broadening is ubiquitous in condensed phase spectroscopy. If we 
consider the transition between two distinct quantum states of a dilute impurity 
("solute") molecule or atom, different solutes will experience different environ- 
ments, producing different transition energies. The ensemble of these solutes then 
leads to the observed "inhomogeneously" broadened absorption lineshape. For 
a transition to be truly inhomogeneously broadened, the environment of each 
solute must be static on the relevant experimental time scale. In reality, however, 
there are always time-dependent fluctuations of the environments due to the 
thermal motion of the host molecules ("solvent"). In the absence of spectral 
diffusion (such that a suitably defined time average of the transition energy for 
a particular solute does not drift on the experimental timescale), if we assume 
that these fluctuations are (statistically) the same for each solute, they produce 
what is known as pure dephasing, which, coupled with any population relax- 
ation, leads to homogeneous broadening [1-3]. The observed spectrum is then a 
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convolution of this homogeneous lineshape with the inhomogeneous transition 
energy distribution. 

For many solute/solvent systems, especially at low temperatures, where the 
solvent is a crystalline or amorphous solid, the inhomogeneous distribution is 
much broader than the homogeneous lineshape, and so the observed lineshape is 
completely dominated by the former effect. This has prompted spectroscopists 
interested in condensed phase dynamics to develop techniques such as hole 
burning [4-7], fluorescence line narrowing (FLN) [8, 9], and photon echoes 
[10, 11], that enable one to determine the homogeneous lineshape even in those 
situations that are overwhelmingly inhomogeneously broadened. The spectacular 
success of these techniques has led naturally to the attitude that, like Doppler 
broadening in the gas phase and magnetic field inhomogeneities in NMR, 
inhomogeneous broadening is an unwanted complication in condensed phase 
spectroscopy. 

Recent interest in the structure of disordered systems has refocused attention 
on the inhomogeneous transition energy distribution. By considering the energy 
distributions of the two quantum levels, one can imagine two extreme scenarios, 
each of which produces inhomogeneous broadening. In the first, one assumes 
that all solutes that have a certain energy in one quantum state are also 
degenerate in the other state. In other words, the conditional probability that if 
a solute has energy E in state 0~ it has energy E' in state/3 is a delta function, and 
the two energy distributions are completely correlated. If the energy distributions 
of the two states have, for example, different widths, this necessarily leads to 
inhomogeneous broadening. In the other extreme scenario one assumes that the 
conditional probability discussed above is simply equal to the /3 state energy 
distribution. That is, the probability of obtaining energy E' in state /3 is 
independent of what the energy is in state ~, which clearly produces inhomoge- 
neous broadening. Moreover, the joint probability for finding E in state ~ and E' 
in state/3 factors into a product of the individual state distributions, and so the 
distributions are completely uncorrelated. These two possibilities, as well as the 
intermediate case of partial correlation, have been described with phenomenolog- 
ical models by Williamson and Kwiram [12], Selzer [ 13], Lee, Walsh and Fayer 
[14], and Suter et al. [15]. 

Since each of these extreme scenarios leads to inhomogeneous broadening, if 
an absorption spectrum is observed to be inhomogeneously broadened, it cannot 
be deduced which, if either, of the scenarios is valid for a particular experiment. 
On the other hand, if two (or more) different transitions are simultaneously 
probed, as in some FLN, phosphorescence-line-narrowing (PLN) and hole-burn- 
ing studies, one can begin to unravel the extent to which different states, or more 
accurately, different transitions (see the discussion by Friedrich and Haarer [16]), 
are correlated. Indeed, all of these types of experiments [14-21] have been 
analyzed within the above phenomenological framework. 

While this framework has provided us with considerable conceptual under- 
standing, ultimately, inhomogeneous broadening is produced by microscopic 
interactions, and one would therefore like to couch the phenomenological ideas 
within a microscopic theory. A microscopic theory of the inhomogeneous 
lineshape of impurities in crystals was reviewed by Stoneham [22], which was 
later extended to consider the correlation between different transitions by Kikas 
and Rfitsep [23]. Independent of the latter work, a related molecular theory 
directed toward crystalline or amorphous solids, which focused specifically on 
the conditional probabilities between states, was recently outlined by Laird and 
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Skinner [24]. Similar work on the absorption lineshape of a solute in a liquid 
solvent was performed by Loring [25]. Soon thereafter, Simon et al. [26] 
addressed in somewhat greater depth the question, for liquid solvents, of the 
energy distributions themselves. Along complementary lines, a recent computer 
simulation [27] shows [28] that for a realistic model of a solute in an amorphous 
solid the conditional probability is in the intermediate correlation regime. 

The basic idea behind the microscopic theories of inhomogeneous broaden- 
ing is that the energy levels of a dilute solute in a condensed phase are perturbed 
by a summation of pairwise interactions. For example, to understand the spectra 
of substitutional impurities in crystals [22, 23], one begins with a reference state 
of a single impurity in a perfect crystal. Various kinds of defects from an 
otherwise perfect crystal lattice then perturb these reference levels, and the actual 
distribution of levels for a particular state is obtained by performing an ensemble 
average of the different environments produced by different static defect configu- 
rations. For impurities in amorphous solids or liquids, the reference state of the 
perfect crystal is not particularly appropriate, and so instead we adopt the 
isolated solute in the gas phase as the relevant reference state [24, 26]. In this case 
the perturbations of the solute levels involve the interaction of the solute with all 
solvent atoms or molecules. 

In what follows we focus specifically on the problem of structurally disor- 
dered solvents (liquids or glasses), although the formal theory is also applicable 
to crystals. In considering liquid solvents we realize that solute spectra are often 
not dominated by inhomogeneous broadening, due to rapid motion of the 
solvent. In glasses, however, since large-amplitude molecular motion is absent, 
solute spectra are indeed inhomogeneously broadened. Since the structure of 
liquids is very similar to that of glasses, the energy distributions and conditional 
probabilities that emerge from the liquid problem will be relevant to the 
amorphous solid solvent as well. Moreover, since the liquid is an equilibrium 
system, analytical theories of its structure, and computer simulation of solute 
spectra are more straightforward than for a glass. Therefore, our motivation for 
studying liquids is primarily to illuminate the situation in glasses. 

In this paper we present a complete derivation of the energy level distribu- 
tions and the conditional probabilities discussed by Laird and Skinner [24]. We 
then extend the theory of the conditional probabilities by incorporating solvent 
correlation, as discussed by Simon et al. [26] in their theory of the level 
distributions. We show that the phenomenological concepts and models dis- 
cussed earlier are produced naturally by this microscopic theory. In Sect. 2 we 
present the theoretical derivations. In Sect. 3 we test the theory by performing 
Monte Carlo simulations for a particular molecular model - that of a Lennard- 
Jones solute in a Lennard-Jones liquid solvent. In Sect. 4 we show how the basic 
theory can be modified to describe various types of spectroscopic experiments 
involving two different transitions, and we compare our results to simulation. In 
Sect. 5 we conclude. 

2. Microscopic derivation of single state and joint energy distributions 

We consider a single solute atom or molecule in a static solvent, which could be 
an equilibrium liquid or crystal, or a nonequilibrium amorphous solid. However, 
we choose as a reference state the solute in the gas phase, which means, as 
discussed in the Introduction, that here we will focus specifically on spectroscopy 
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in liquids and glasses. We will assume that for each quantum state of the solute 
the interactions between solute and solvent can be decomposed in a pairwise- 
additive manner. We will further assume for simplicity that these pairwise 
interactions depend only on the distance between the solute and solvent 
molecules, although this assumption could very easily be relaxed. If  we take the 
position of the solute to be the origin, then for a given configuration of N solvent 
atoms, the energy of state ct of the solute is: 

N 

E c t ( R l ,  • - - ,  RN) = EO ~t_ E v~t(Ri), ( 2 . 1 )  
i = l  

where E ° is the unperturbed energy of the solute in state e,/~i is the position of 
the ith solvent molecule, Ri is its magnitude, and G ( R )  is the pairwise solute- 
solvent interaction potential for state e. 

Assuming that only the ground state (ct = 0) of the solute is thermally 
populated, for an equilibrium liquid the distribution of solvent coordinates is 
given by: 

]} P( /~I , . . - , /~N)  = - ~ - e x p  - 3  vo(Ri) + Us(.R1,. . . , R N )  , (2.2) 

Z = f f d - R l " ' d - R ~ v e x p { - f l [ ~ v o ( R i ) + U s (  ~ , . . . . .  /~u) ]), (2.3) 

where fl = l /kT,  V is the volume of the system, and Us(/~l . . . .  ,/~N) is the total 
solvent-solvent interaction potential energy. On the other hand, for a nonegui- 
librium glass, one cannot write down a simple expression for P(/~a . . . . .  RN),  
which is determined by the thermal history of the system. In either case, 
P(/~I . . . . .  /~N) is normalized by: 

f d R l ' ' "  dRNP(R1 RN)  = VN. (2.4) 

Once the solute-solvent interaction and P(/~I . . . . .  RN) have been specified, 
the energy distribution of the solute in state ~ is given by: 

, RN))  

-= < 6 ( E -  E~(/~ . . . .  , / ~ ) )  >. (2.5) 

Replacing the (5 function with its integral representation yields: 

f: ; 1 dte i(E-E~)t dR1 "" dRNP(R~ ~N)e--iY.i~(Rg)t (2.6) 
p~ (E) -- 2z~ V N ~ " " " " " ' 

Following the method of Stoneham [22, 24, 29], we first make the assumption 
that the coordinates of the solvent molecules are uncorrelated. This means that 
the distribution function P(/~ . . . . .  /~u) factors into the product of N two-parti- 
cle solute-solvent radial distribution functions: 

P(K~ . . . . .  RN ) = g(R1 )g(R2) "'" g(RN ). (2.7) 

This factorization is in the spirit of a mean-field-like approximation. Since it does 
not reflect an explicit consideration of solvent-solvent interactions, it is only 
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strictly valid for very low solvent densities. Applying this approximation, Eq. 
(2.6) becomes: 

p~(E) = ~ dtei(e- ~)t (R)e -iv.(R)t . (2.8) 
o o  

Defining a new function J~(t) by: 

J~(t) .= f dKg(R)[ 1 - e- i~  (R),], (2.9) 

taking the limit N ~ oo while keeping the solvent density 0 = N/V constant, and 
recalling the relation, lira [I + x/N]N= e ~, results in: 

N ~ o o  ,;° p~(E) = ~ dtei(~-~)te-O~(o. (2.10) 
o o  

This result [22] can be applied to many situations of inhomogeneous broadening. 
In general, this integral cannot be evaluated analytically. However, a simple 

approximation [24, 29] leads to a more tractable form: for large enough 0, the 
integrand in Eq. (2.10) is dominated by values of t for which J~(t) is well-approx- 
imated by the first two terms in its Taylor expansion about t = 0: 

J~(t) ~ i f dRg(R)v~(R)t + ½ f dRg(R)v~(R)2t 2. (2.11) 

Substituting this expansion into Eq. (2.10) and integrating yields a Gaussian 
expression in E: 

1 [ 
p~ (E) - ~ exp 2D~ J '  (2.12) 

centered at 

and with variance 

E~ = E ° + e f aR~g(R)v,(R), (2.13) 

r 
D~, = Q J dKg(R)v,(R) 2. (2.14) 

The center energy of the Gaussian is the unperturbed energy plus a "solvent 
shift," which is simply related to the average solute-solvent interaction. 

In the same spirit, the joint probability distribution for two solute quantum 
states may be derived. The probability that the solute has energy E in state 0~ and 
energy E' in state fl is given by: 

p~p(E, E') = (6(E - E ~ ( R  1 . . . . .  R N ) ) ~ (  E "  - -  E # ( R 1  . . . .  , RN)))- (2.15) 

Replacing the 6 functions by their integral representations and following the 
procedure outlined above, the probability function becomes: 

p~(E, E') = ~ dt dt" ei(e- ~)tei(e'- ~)C e-°~p (t't'), (2.16) 
o o  
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where 

t') = f dRg(R)[ 1 - e -iv, (rot e -iv# (rot']. J~fl ( t, (2. 17) 

Substituting the two-variable Taylor expansion for J~(t, t') about t = t' = 0, and 
performing the integrations in Eq. (2.16) gives: 

1 

p~(E, E') 2rcx/(D~,~,Dl3 ~ 2 - D~a ) 

V D~(E' -Ea)  2 -  2D~a(E'- E~)(E - E~)+ Da¢(E-- E~) 2] 
× exp L ~ ~ D ~ 5  ~'  

(2.18) 

where 

D~ = ~ J d_Rg(R)v~(R)v,(R). (2.19) 

The conditional probability that if the solute has energy E in state u it has 
energy E' in state/3 is defined by: 

f~(E" [ E) _p~(E,  E') p~(E) ' (2.20) 

and from Eqs. (2.12) and (2.18) we see that it is a Gaussian in E': 

1 e x p I  (E'--Etj-(D~t3/D~)(E-E~))21 
f~(E" [ E) = x/Z~(Dtj~ _ DZ /D~) 2~(-~ ~ - ~ i  • 

(2.21) 

Two interesting limits of this equation may be explored. First, in the limit 
that D~D~t~ = D2~, f t~(E'[E) becomes a delta function. From a microscopic 
perspective, this occurs, for example, when vtj(R)/v,(R ) = 2 (a constant), and one 
finds that fB~(E ' [E)=6(E ' -E~- )~ (E-E~) ) .  This corresponds to the phe- 
nomenological model discussed by Seizer [13], where it is assumed that there is 
a one-to-one correspondence between the energies in two different states. In the 
other extreme is the limit that D~, ,~ D~, D, , ;  in this case the conditional 
probability approaches the energy distribution of the /3 level, p,(E'). (In this 
limit it is also easy to see that p,,(E, E') ~p~(E)pa(E').) This corresponds to the 
model discussed by Lee, Walsh, and Fayer [14], in which it is assumed that there 
is no correlation between the energy of one state and the energy of another. The 
more general case of partial correlation has been described phenomenologically 
by Suter et al. [ 15]. Thus our theory illuminates the microscopic origin of these 
phenomenological models, and for any particular microscopic model of inhomo- 
geneous broadening, shows how to determine the appropriate expression for the 
conditional probability. 

A quantitative measure of the correlation between the two energy distribu- 
tions is given by the ratio of the width of the conditional probability distribution 
f~(E '  [E) to the width of the/3 state distribution: 

R~ = 5 1  D2~ . (2.22) 
/ 

D~,~D ~t3 



Inhomogeneous broadening: transitions in liquids and gases 35 

Note that since D~a2 Da~, R,a = Rp,. From the Schwartz inequality that follows 
from Eq. (2.19), D , a  <<,D,~Dap, we see that 0~<RB~ ~< 1. Indeed, R¢~ = 0  and 1 
correspond to the correlated and uncorrelated limits respectively. 

In a similar manner as the derivation of Eq. (2.18) from Eq. (2.15), the triple 
joint probability may be derived from: 

p,ar(E,  E ' ,  E")  = ( 6 ( E  --  E,(_~, ,  . . . , R N ) )  

x 3(E' - Ea(_R ~ . . . . .  R N ) ) f ( E "  - E~(_~ . . . . .  RN))>, (2.23) 

which can be generalized immediately to higher-order joint probabilities if 
desired. 

In the above there are two assumptions that involve the solvent density. The 
first is that the solvent coordinates are uncorrelated, which is only strictly valid 
at low densities. The second is that the density is large enough that e -eJ~(o is 
well-approximated by Taylor expanding J , ( t )  about t = 0. It is not immediately 
obvious for what range of density this pair of assumptions holds. In fact, Monte 
Carlo simulations with a Lennard-Jones solute-solvent interaction at typical 
liquid densities (see below, and also the work of Simon et al. [26]) show that for 
the energy level distributions, while the theory models the simulation data 
qualitatively, it is quantitatively incorrect. Specifically, while the distributions are 
approximately Gaussian and the theory predicts the distribution centers accu- 
rately, it does not predict the variances well. 

One way to correct this problem, which has been implemented by Simon et 
al. [26], is to retain some solvent-solvent correlation at the level of the three- 
particle (solute-solvent-solvent) distribution function, and then make the Kirk- 
wood superposition approximation. For the Lennard-Jones solute-solvent inter- 
action this scheme is shown to be reasonably accurate for the energy level 
distributions [26]. To derive these results we rewrite the energy distribution in 
Eq. (2.6) as: 

p~(E)  = ~ d t e i ( E - ~ ) t ( e  - i ) 2 i  v a ( R i ) t ) .  (2.24) 
o ~  

Performing a cumulant expansion of the term in brackets and truncating at 
second order gives: 

ln(e -eZ, v, (R i )/> = - -  i v~(Re) t - ~ v , ( R , )  t 2, (2.25) 
c c 

where the first and second cumulants are defined by ( X ) c -  ( X )  and 
(X2)c -- (X 2) - ( X )  2 [30]. Substituting this back into Eq. (2.24) and integrating 
over t we obtain a Gaussian expression for the energy distribution identical in 
form to Eq. (2.12), but with: 

(2.26) 

and 

• D~ = v, (R i (2.27) 
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Using the definition of the two-particle solute-solvent correlation function, 
which because of isotropic potential interactions is simply the radial distribution 
function: 

1 .fdR2"'" dRwP(R,, R~v), g(R1) = V N -  1 • • " ,  
(2.28) 

and realizing that (~iv~(Ri))= N(v~(R1)), yields for the first cumulant: 

(~i~)ct(Ri))c=QfdRg(R)l)ct(R), (2.29) 

which shows that Eq. (2.26) is identical to Eq. (2.13). Similarly, using the 
definition of the three-particle solute-solvent-solvent correlation function: 

1 f K  . . ,  g3(/~,/~2) - V~-_2 d 3 " "  dR~vP(R,,. RN), (2.30) 

and the fact that: 

I ~  v~(Ri)v~(Rj)) = N(v~(R1)2) + N(N-1)(v~(R1)v~(R2)), (2.31) 

then in the limit N ~ ~ the variance becomes: 

D~ = O f dRg(R)v~(R)2 + O2 f - ", , - dR dR v~(R)v~(R )[g3(R,/~') - g(R)g(R')]. (2.32) 

The first term in this equation is identical to Eq. (2.14), but there is an additional 
term proportional to density squared that involves the triplet correlation func- 
tion. Following Simon et al. [26], we make use of the Kirkwood superposition 
approximation: 

g3(1~1,1~2) ~ g(R~)g(R2)gs([-~l-/~21), (2.33) 

where g~(R) is the solvent-solvent radial distribution function (which we assume 
also depends only on the solvent-solvent distance), to give: 

_f d-Rg(R)v~(R)2 + ~2 _f dR dR'v~(R)v~(R')g(R)g(R')[g~(lR - R'I) - 1]. D~ 

(2.34) 

Notice that if we take the solvent-solvent distribution function to be 1, i.e., no 
solvent-solvent correlation, then Eq. (2.14) is recovered. Since the second term in 
Eq. (2.34) involves a convolution, it can be evaluated most easily with Fourier 
transforms [26]. 

In a similar manner we can incorporate solvent correlation into our theory of 
the joint probability distributions, and hence the conditional probabilities. 
Rewriting Eq. (2.15) as: 

l f _ ~ d t f ~  ° p~, (E, E') = ~ dt' e i~e - ~ )t e fiE" - ~ )C (e -~tE~ ~ (Ri)t-4- ~i vfl (R i )t'] ) ,  

(2.35) 

truncating the cumulant expansion of the term in brackets at second order, 
performing the t and t' integrations, and using the superposifion approximation, 



Inhomogeneous broadening: transitions in liquids and gases 37 

leads to a Gaussian expression for p~p(E, E') identical in form to Eq. (2.18), and 
with E~ given by Eq. (2.13), but with: 

.f dKg(R)v~(R)v~(R) +Q2.f dR dR'v~(R)vp(R')g(R)g(R')[g,(lR-/~'1)- 1]. D~ 

(2.36) 

Thus we see that upon including solvent-solvent correlations, the center 
energies of both the single state and joint probability distributions remain 
unchanged, but the widths are modified. 

3. Conditional probabilities for a solute in a Lennard-Jones liquid 

To illustrate the theory, and especially to show how different values of the 
correlation parameter R~ are produced by different microscopic interactions, we 
consider the specific case of a Lennard-Jones solute in an equilibrium Lennard- 
Jones liquid solvent. The interaction between the solute in state ~ and the solvent 
is taken to be: 

v~(R) = 4e~, - \ R J  _~' 

where a~ is roughly interpreted as the sum of the radii of the solvent and the 
solute in state a, and E~ is the well depth. The solvent-solvent interaction 
potential is given by: 

vs(R)=4EI(R)12-(R)6]. (3.2) 

In order to obtain a crude understanding of how the Lennard-Jones parame- 
ters affect Ra~, we first consider the simple approximation that: 

g(R) -- e-avo(g), (3.3) 

which can be obtained from Eqs. (2.2), (2.3) and (2.28) by neglecting entirely the 
solvent-solvent interaction. We then use only the first-order expression Eq. (2.19) 
to evaluate D~a. The result is [31]: 

23/4~ 3/2 (0"~6 (O'fl~ 6 
D~ 48 E~EP~0°'3(fl£°) -7/4ePE°/2 -- - -  

\Oo/ \ao/ 
X {15 (0"~ 6 (0"fl~6 D 7/2(-- 2N/~o ) 

\ao,' \ ao /  

--12 2x/~0 I ( ~ )  6 (O-fl~61 } + D-5/2(--x/2flEo) + 32fleoD_a/2(-- 2V/~o) , 
\ a o / d  

(3.4) 

where Dr(x) is the parabolic cylinder function [32], which can be evaluated from 
tables or numerically. We see from the above and Eq. (2.22) that Ra~ depends 
only on the three dimensionless ratios fleo, tr~/ao, and tra/ao. 

Specifically focusing on the correlation between the ground state energy 
distribution and some excited state distribution, we take ~ = 0 and fl = 1. In 
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Fig. 1. The correlation parameter Rto as a function of the dimensionless ratios tr~/ao and fie o, for the 
model discussed in the text. The solid lines are contours, with the values indicated 

Fig. 2. po(E) vs (E - E°)/E. The squares with error bars are the simulation data, and the dotted and 
solid lines are from Eqs. (2.12), (2.13), and (2.14) and (2.34) respectively 

Fig. 3. Pl (E) vs ( E -  E°)/£ for a I/a o = 1.20. The squares are the simulation data, and the solid line 
is from Eqs. (2.12), (2.13), and (2.34) 

Fig. 4. flo(E' I E) vs (E' - E°)/E for al /a  o = 1.01. The squares and solid line correspond to (E -- E°) /  
¢ = - 11.14, the triangles and short dashed line correspond to (E - E°)/E = -- 11.74, and the x ' s  and 
long dashed line correspond to ( E -  E°)/£ = --12.34 

Fig.  1 is s h o w n  a c o n t o u r  p lo t  o f  Rl0 as a f u n c t i o n  o f  flEo a n d  a ~ / a  o. F o r  
a l / a O  = 1, V l ( R ) / v o ( R )  = El/cO, w h i c h  is a cons t an t ,  a n d  so, as  d i scussed  ear l ier ,  
R10 = 0. W e  see tha t  in genera l ,  as a l /aO increases ,  Rio  increases ,  a n d  fo r  a 
r e a s o n a b l e  r ange  o f  d imens ion le s s  ra t ios  a l / a O  and  fleo o n e  ob t a in s  the  full  r ange  
o f  Rio values .  T h u s  b o t h  ex t r eme  l imi ts  o f  the  c o n d i t i o n a l  p robab i l i t i e s  can  be  
p r o d u c e d  by  the  s a m e  f o r m  o f  the  so lu t e - so lven t  i n t e r a c t i o n  po ten t i a l .  
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Armed with a rough idea of what parameters to choose, in order to check 
quantitatively the theory we next present a Monte Carlo simulation of the full 
solute-solvent system introduced above. It is easy to see from Eqs. (2.22) and 
(2.19) or (2.36) that Rio  does not depend on the value of c~, and we therefore set 
el = Co. To simplify matters further, we assume that ao = a and eo = c, that is, in 
its ground state (which, as mentioned previously, we assume is the only state that 
is thermally populated) the solute interacts with solvent molecules in the same 
way that solvent molecules interact with each other. We implement this simplifi- 
cation in order to improve the statistics of the energy distributions, since in this 
way we can consider each particle in the fluid to be a solute; for an N particle 
Monte Carlo system, the statistics are improved x/~-fold.  We choose thermo- 
dynamic parameters so that the solvent is a liquid near the triple point [33]: 
~ 0  "3 = 0.81408 and l/fie = 0.7866667. 

In the Monte Carlo simulations we consider a canonical ensemble of 810 
particles in a three-dimensional cubic box with periodic boundaries. All potential 
interactions are truncated at half the box length. In calculating the statistical 
error bars, which are always reported as two standard deviations, it is necessary 
to average over uncorrelated configurations, which from the fluctuations in g(R) 
we determined to be every twelfth configuration. To calculate the energy 
distributions, for each uncorrelated configuration the solute energy is obtained 
from a pairwise sum of the appropriate solute-solvent potentials. 

In Fig. 2 is shown the energy distribution of the solute in its ground state, 
po(E). The data points are from the Monte Carlo simulation. The dashed line is 
calculated from Eqs. (2.12), (2.13), and (2.14), with the radial distribution 
function g(R) taken from the simulation. As seen, although the center energy Eo 
is obtained accurately, the variance D0o is quantitatively incorrect. A better 
approximation, shown as the solid line, comes from Eqs. (2.12), (2.13), and 
(2.34). Thus the incorporation of solvent-solvent correlation significantly im- 
proves the theory. 

To calculate excited state energy distributions and conditional probabilities 
we need to choose values of al /a  o. To obtain values of R10 such that R10 "~ 1, 
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Rl0 ~ 0.5, and Rio ,~ 1, which reflect very correlated, partially correlated, and 
nearly uncorrelated distributions respectively, we see from Fig. 1 that for the 
simulation (inverse) temperature of fleo ~ 1.27, suitable choices are al/aO = 1.01, 
1.05, and 1.20. Indeed, calculation of Rio from Eqs. (2.22) and (2.36) with these 
choices (but using the g(R) from simulation) yields R10 = 0.146, 0.602, and 0.949, 
respectively. 

The excited state distribution, pl(E), for al/a o = 1.20 is shown in Fig. 3. The 
simulation data are in reasonable agreement with the theoretical result from Eqs. 
(2.12), (2.13), and (2.34). Similar results are obtained for the other values of 
0" 1/0" 0 . 

We also compare the simulation to theory for the conditional probability 
flo(E" ] E) for the three ratios of al/tro, and for three values of E, one near the 
center of the ground state distribution, ( E -  E°)/c = -11.74, and one to each 
side of the center: (E - E°)/E = -- 11.14 and - 12.34. Conditional probabilities 
are calculated from Eqs. (2.13), (2.21), and (2.36). The comparisons for 
trl/ao= 1.01, 1.05 and 1.20 are shown in Figs. 4, 5, and 6. The agreement 
between simulation and theory is not too bad, especially for the smaller values 
of 0-1/O" 0 o r  larger values of ( E -  E°)/E. 

To conclude this section, the Monte Carlo simulation shows that the simple 
molecular theory that takes into account solvent-solvent correlation, at least in 
a crude manner, provides a reasonably accurate description of the energy 
distributions and conditional probabilities. The simulation also verifies that this 
simple molecular model with a single form for the solute-solvent interaction, can, 
by simply changing the Lennard-Jones tr parameter, span the complete range of 
energy distribution correlation discussed phenomenologically by others. 

4. Spectroscopy 

Although energy distributions and the associated conditional probabilities are of 
fundamental interest, in spectroscopic experiments only differences between 
energy levels can be measured. The above microscopic theory can be extended to 
describe directly several different types of spectroscopy. The absorption spec- 
trum, for example, is equal to a transition-energy probability distribution, while 
some FLN, PLN and hole-burning spectroscopies are related to two-point joint 
transition-energy distributions. 

The probability distribution for the transition energy between states a and fl 
can be calculated in much the same way as a simple energy distribution, 
beginning with 

p~/j(AE) = <6(AE - [E~(/~,, . . . ,  RN) - -  E~(R1 . . . . .  R N ) l ) > .  (4.1) 

Thus, as in Eq. (2.24), this can be written as: 

1 dtei(~e- ~ + ~)t<e -i  S, v,# (R i )t>, p~/~(AE) = ~ (4.2) 

where v~a(R) = v~(R) -va(R) .  This yields a Gaussian expression in AE: 

1 [ (AE-E~)2I, 
p~p(AE) = ~ exp 2F~ J (4.3) 
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Fig. 7. The absorption spectrumplo(AE ) vs (AE - E°l + E°o)/e for al/ao = 1.20. The squares are from 
the simulation and the solid line is from Eq. (4.3) 

Fig. 8. The FLN conditional probability f121o(AEIEL) vs ( A E - E ° + E ° ) / E  for al/ao= 1.20 and 
a2/% = 1.05. The squares and solid line correspond to (E L -- E ° + E°)/E = 25, the triangles and short 
dashed line correspond to (E L - E ° + E°)/e = 32, and the x's and long dashed line correspond to 
(E L -- E ° + E°)/e = 39 

where 

E~B = E~ -- EB, (4.4) 

F~B = D ~  + DBB -- 2D~B. (4.5) 

In  the uncorrelated limit, where D~B < D ~ ,  DaB , one obtains a variance o f  
D ~  + DBB. In the case where vB(R) /v~(R  ) = 2, we find a variance o f  D ~ ( 2  - 1) 2, 
which is nonzero  when the a and fl energy distributions have different widths 
(2 # 1). Thus we see that  either o f  the extreme cases discussed earlier leads to 
inhomogeneous  broadening.  

This distribution can also be derived from: 

p~p(AE)  = f dE" f dEp~B(E, E ' ) 5 ( A E  - [E - E']), (4.6) 

leading to the same results [24]. 
Turning to a quantitative check o f  the theory, we consider the inhomoge-  

neous absorpt ion lineshape for  the transit ion f rom the solute g round  state 
(fl = 0) to some excited state (~ = 1), which is simply p l o ( A E ) .  In  Fig. 7 we 
compare  the predictions given by Eqs. (4.3, 4.4, 4.5, 2.13, and 2.36) for  Plo (AE)  
to  the Monte  Carlo simulation for the case o f  tr~/~0 = 1.20. The spectrum is quite 
broad  and the theory models it reasonably well. 

The joint  probabil i ty distribution for a transit ion between states ~ and fl, and 
a transit ion between states i, and 5, is given by: 

p~,p~,,(AE, AE') = <6(AE - [E,(/~I,... , AN) -- EB(./~ , .... ,/~N)]) 

× 5(AE" -- [G(K1 ..... AN) - E,(K~ ..... RN)]) )- (4.7) 
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The derivation follows the same course as that of the joint energy distribution in 
Sect. 2. The end result is: 

1 
p~ara(AE, AE') = 

2nx/(F~aFr ~ z - Q ~ a ~ )  

x e x p [  F~a(AE" - Er~)2 - 2Q~a"~(AE - E~a)(AE'-  Er~) + Fr'~(AE- E'a)21 
2( e ,  a rr~ - Q ~ar~ ) 

where 

(4.8) 

Q~ara = D~r + Daa - D~a - Dar = I(F~a + Far - F,~ - Fa~ ). (4.9) 

These same results can also be derived, in principle, from the four-point joint 
distribution function: 

x 6(AE -- [E - E'])6(AE' - [E" - E"]). (4.10) 

Note, however, that Eq. (6) of Ref. [24], which is related to a special case of the 
above, is incorrect, because the triple joint probability distribution does not 
factor into the product of the ~ energy distribution and the fla and 7fl conditional 
probabilities as indicated therein. 

The conditional probability that if the solute has transition energy AE 
between states ~t and fl it has transition energy AE" between states 7 and 6 is 
given by: 

1 

x/2~z(Fr ' 2 - Q , a ~ a / F , a )  

(AE'-E~'a-(Q~'ar'~/F~'a)(AE-E~'a))Z.] (4.11) 
× exp . . . .  ~--5----7b---S~ ~ 

2(F~ - O ~pr~ /F~p) 

The ratio of the width of this conditional probability to the width of the 76 
transition-energy distribution: 

Rv~a = ~/1 F~aF~ (4.12) 

is a measure of the correlation between transition-energy distributions. 
In several different types of experiments, discussed below, this conditional 

probability can be measured directly. That is, the energy of the ~//transition is 
laser-selected, and then the resulting 76 energy distribution is determined. 
Therefore the ratio Ry~ a is a quantitative indicator of the laser-selected narrow- 
ing of the 76 distribution. 

For example, in a typical fluorescence-line-narrowing experiment one excites 
an inhomogeneously broadened transition between two electronic levels with a 
narrow-band laser. One finds [ 17, 18] that fluorescence resonant with the laser is 
sharp, while nonresonant fluorescence (to an excited vibrational or crystal field 
level in the ground electronic state or to another excited electronic state) is less 
sharp, but still narrower than the nonresonant fluorescence that results from 
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broad-band excitation (which corresponds to the full inhomogeneous transition- 
energy distribution). Thus, in the former situation, the laser has already selected 
out a particular transition-energy difference between states that we will label 0 
(ground) and 1 (excited), which is manifest in monochromatic fluorescence for 
this transition. On the other hand, fluorescence from level 1 to a third level, 2, 
is not necessarily constrained by the laser-prescribed 1-0 energy difference. 

We can first consider the case of  resonant fluorescence, where ~ = 7 = 1 and 
fl = 6 = 0. From Eqs. (4.5), (4.9), and (4.12) we see that in this case, as expected, 
the ratio of  the narrowed to unnarrowed fluorescence linewidths, R~01o, is zero, 
showing that with narrow-band laser excitation resonant fluorescence is sharp. 
For  nonresonant fluorescence we have ct = 7 = 1, fi = 0 and ~ = 2. In the 
correlated limit where vl(R)/vo(R ) = 2, and v2(R)/vo(R)= 2' we find, again as 
expected, that R~21o = 0. Thus in the correlated limit one obtains complete line 
narrowing even for nonresonant transitions. 

More generally, the nonresonant 1 ~ 2 fluorescence intensity is proportional 
to the conditional probabilityf~210(AE [EL), where EL is the laser energy and AE 
is the fluorescence energy. In Fig. 8 is shown a comparison of  the Monte Carlo 
data to the theory for this conditional probability for al/aO= 1.20 and 
a2/~ro---1.05. Three different laser energies are shown, corresponding to the 
center of  the 0-1 absorption spectrum, (EL-  E ° + E°o)/E = 32, and one to each 
side of the center, (EL-E°+E°)/E = 2 5  and 39. For  these parameters we 
calculate the ratio of this fluorescence linewidth to the full inhomogeneous 
linewidth for the 1 ~ 2  transition, finding that R12~0 = 0.0138, which shows that 
the fluorescence is narrowed quite substantially compared to that resulting from 
broad-band excitation. 

Narrowing effects similar to those found in F LN  can also occur in phospho- 
rescence spectroscopy. In this case one considers a solute with ground and 
excited singlet states, and a low-lying triplet state. When the triplet is directly 
excited with a narrow-band laser one obtains sharp phosphorescence, but when 
the singlet is excited, upon intersystem crossing the phosphorescence is broader 
[12, 15, 19, 20]. If  the ground and excited singlet and triplet states are labeled 0, 
1, and 2 respectively, then the phosphorescence spectrum after narrow-band 
singlet excitation is proportional to f2Olo(AE]EL). In Fig. 9 is compared the 
Monte Carlo simulation to the theory for the same values of  as, az and EL as in 
Fig. 8. The phosphorescence is narrowed, but not as much as the fluorescence - 
our theoretical calculation gives R2o~o = 0.158 for the ratio of the narrowed to 
broad-band excitation phosphorescence linewidths. 

Hole-burning spectroscopy can also involve the correlation between two 
different transitions. In a photochemical hole-burning experiment, a transition 
between the ground state and a particular excited state of the solute is irradiated 
with a narrow-band laser. A certain fraction of  the solutes reacts photochemi- 
cally to form a new solute species, the photoproduct.  Subsequently, the absorp- 
tion profile of the solute is measured, resulting in a narrow hole at the laser 
frequency. In one interesting experiment [16] a narrow hole was burnt in a 
vibronic transition, which resulted in broader nonresonant holes at the electronic 
origin. The level scheme appropriate for this experiment is identical to the PLN 
scheme - in this case 0 is the ground state, 1 is the vibronic level, and 2 is the 
vibrationless excited electronic state. The nonresonant hole spectrum is again 
proportional to f2olo(AE I EL). 

The photoproduct  in general absorbs at a different frequency from the solute, 
and so one can sometimes measure its absorption profile (the anti-hole), which 
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Fig. 9. The PLN conditional probabi l i tY f2olo(AE I EL) vs (AE  -- E ° + E°) /e  for the same a 1 and a z 
and values of  EL as in Fig. 8 

Fig. 10. The anti-hole conditional probabil i ty f3z lo(AE I EL) vs (AE - E ° + E° ) / e  for a l /a  o = 1.20, 
a2/cr o = 1.01, and a3/a  0 = 1.05, and for the same values of  E z as in Fig. 8 

is found to be substantially broader than the original hole [14, 21]. Thus this 
experiment measures the correlation between tw~ completely distinct transitions 
(no common levels). If the ground and excited states of the solute are 0 and 1, 
and the ground and excited states of the photoproduct are 2 and 3, the anti-hole 
absorption spectrum is proportional to f321o(AEIEL). In Fig. 10 is shown the 
comparison between theory and simulation for this conditional probability, for 
al/aO = 1.20, a2/a o = 1.01, and a3/a o = 1.05, for three different values of E L. In 
this case the ratio of the anti-hole width to the full photoproduct inhomogeneous 
linewidth is R3210 = 0.146. 

5. Discussion 

We have presented a simple molecular theory of the inhomogeneous energy 
distributions of the internal quantum states of a solute in a liquid or glassy 
solvent. These distributions, which are predicted to be Gaussian, are shown to be 
correlated with each other. We show how changing the solute-solvent interac- 
tions determines this level of correlation. We also show how the theory can be 
modified to describe spectroscopic observables. That is, we determine the transi- 
tion-energy distributions for different pairs of levels, and show how these 
distributions are correlated. We then describe some applications of the theory to 
fluorescence-line-narrowing, phosphorescence-line-narrowing and hole-burning 
spectroscopies. This theory supplies a microscopic framework for the phe- 
nomenological models that have been discussed previously. 

We have illustrated the theory with a simple model of a Lennard-Jones solute 
in a Lennard-Jones liquid solvent, and have shown that the theory compares 
quite favorably to Monte Carlo simulations of the same model. For other 
solute-solvent interactions, the Gaussian approximations may not be adequate, 
and one could extend the theory along the lines of the closest particle distribu- 
tion approach of Simon et al. [26]. For a Lennard-Jones solute in a Lennard- 
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Jones glass, the results would be similar to that of the liquid solvent, since the 
solute-solvent radial distribution functions for the two cases are quite similar. 
For a quantitative comparison, it would be straightforward to implement one of 
several quenching techniques in Order to generate the appropriate radial distribu- 
tion function from computer simulation. In the derivation of the theory we have 
assumed isotropic solute-solvent and solvent-solvent interactions. As mentioned 
before, this assumption could be relaxed quite easily. Finally, many of the formal 
ideas espoused herein may be applicable to spectroscopy in crystalline solids as 
well. 

In experiments that essentially measure the conditional probability between 
two different transitions, it is typically found that the narrowing observed from 
selective excitation of the first transition is less pronounced than that found in 
our Lennard-Jones model. For example, Suter et al. [15] measure the phospho- 
rescence spectra of 1-indanones in different glasses upon both narrow-band and 
broadSband singlet excitation. They report linewidth ratios of the former to the 
latter in the range of 0.33-1. In contrast, in the single example of this type of 
experiment described in this paper we found a ratio of 0.16. Part of this 
difference is surely due to the unrealistic nature of our interaction potentials - 
indeed, the triplet solute-solvent interaction may be quite different in form from 
that of the singlet. There is also the possibility that for these (and other) 
relatively long-time-scale experiments, the solvent rearranges around the excited 
solute, leading to an additional source of broadening that is not treated in the 
present theory. 

Note added in proof 

Messing, Raz and Jortner [(1977) J Chem Phys 66:2239;4577] had previously derived expressions for 
the first two moments of the absorption lineshape that are completely equivalent to our Gaussian 
results. By making an exponential density expansion, they also showed how the theory can describe 
asymmetric lineshapes. JLS thanks Prof. Jortner for bringing this work to our attention. 
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